Multilayer Neural Networks: One or Two Hidden Layers?
نویسندگان
چکیده
We study the number of hidden layers required by a multilayer neu-ral network with threshold units to compute a function f from n d to {O, I}. In dimension d = 2, Gibson characterized the functions computable with just one hidden layer, under the assumption that there is no "multiple intersection point" and that f is only defined on a compact set. We consider the restriction of f to the neighborhood of a multiple intersection point or of infinity, and give necessary and sufficient conditions for it to be locally computable with one hidden layer. We show that adding these conditions to Gib-son's assumptions is not sufficient to ensure global computability with one hidden layer, by exhibiting a new non-local configuration, the "critical cycle", which implies that f is not computable with one hidden layer.
منابع مشابه
Advances for Exact Resolution of Polyhedral Dichotomies by Multilayer Neural Networks
We study the number of hidden layers required by a multilayer neural network with threshold units to compute a dichotomy from R d to f0; 1g, deened by a nite set of hyperplanes. We show that this question is far more intricate than computing Boolean functions, although this well-known problem is underlying our research. We present new advances on the characterization of dichotomies, from R 2 to...
متن کامل4 . Multilayer perceptrons and back - propagation
Multilayer feed-forward networks, or multilayer perceptrons (MLPs) have one or several " hidden " layers of nodes. This implies that they have two or more layers of weights. The limitations of simple perceptrons do not apply to MLPs. In fact, as we will see later, a network with just one hidden layer can represent any Boolean function (including the XOR which is, as we saw, not linearly separab...
متن کاملPrediction of breeding values for the milk production trait in Iranian Holstein cows applying artificial neural networks
The artificial neural networks, the learning algorithms and mathematical models mimicking the information processing ability of human brain can be used non-linear and complex data. The aim of this study was to predict the breeding values for milk production trait in Iranian Holstein cows applying artificial neural networks. Data on 35167 Iranian Holstein cows recorded between 1998 to 2009 were ...
متن کاملThalassaemia classification by neural networks and genetic programming
This paper presents the use of a neural network and a decision tree, which is evolved by genetic programming (GP), in thalassaemia classification. The aim is to differentiate between thalassaemic patients, persons with thalassaemia trait and normal subjects by inspecting characteristics of red blood cells, reticulocytes and platelets. A structured representation on genetic algorithms for non-li...
متن کاملUse of Artificial Neural Networks and PCA to Predict Results of Infertility Treatment in the ICSI Method
Background: Intracytoplasmic sperm injection (ICSI) or microinjection is one of the most commonly used assisted reproductive technologies (ART) in the treatment of patients with infertility problems. At each stage of this treatment cycle, many dependent and independent variables may affect the results, according to which, estimating the accuracy of fertility rate for physicians will be difficul...
متن کامل